Zeview for Quiz. on Sequences/Sevies

Name__

Dwrite out the first four terms of the series & then find the sum.

Determine if
$$\sum_{n=1}^{\infty} \frac{1}{(\sqrt{5}-1)^n}$$
 converges or diverges.

Find the formula for the n^{th} term of the sequence

$$0, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}...$$

Determine the convergence or divergence of $a_n = (-1)^n \frac{n-1}{n+1}$. If the sequence converges, find its limit.

Find the first six terms and the 50th term for the sequence: $d_n = n^2 - 2n$.

Find the first four terms and the 8th term for the sequence: $u_1 = 1$; $u_2 = 2$; $u_n = u_{n-1} + u_{n-2}$ for all $n \ge 3$.

Find the sum of the series: $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$

Determine if each series converges or diverges. If it converges, find the sum.

$$1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^n + \dots$$

If the infinite series $\sum_{n=1}^{\infty} a_n$ has nth partial sum $S_n = (-1)^{n+1}$ for $n \ge 1$, what is the sum of the series?

Find the value of each infinite series.

(a) $\sum_{n=0}^{\infty} -\frac{7}{(-3)^n}$

$$\sum_{n=0}^{\infty} \frac{1}{3}$$

The nth-Term Test can be used to determine divergence for which of the following series?

- I. $\sum_{n=0}^{\infty} \sin 2n$
- II. $\sum_{i=1}^{\infty} \left(2 + \frac{3}{n}\right)$
- III. $\sum_{n=1}^{\infty} \frac{n^3 + 1}{n^2}$

For each of the following series, determine the convergence or divergence of the given series. State the reasoning behind your answer.

$$\sum_{n=1}^{\infty} \frac{3-2n}{5n+1}$$

$$\sum_{n=1}^{\infty} \frac{3^{n+1}}{5^n}$$

Find the interval of convergence for each power series.

$$\sum_{n=0}^{\infty} \frac{(x+2)^n}{3^n}$$

The Maclaurin series $x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots + \frac{x^{2n+1}}{(2n+1)!}$ represents which function f(x)

(A)
$$\sin x$$

(B)
$$-\sin x$$

(B)
$$-\sin x$$
 (C) $\frac{1}{2}(e^x - e^{-x})$ (D) $e^x - e^{-x}$

(D)
$$e^x - e^{-x}$$

Find the second-degree Taylor Polynomial for the function $f(x) = \frac{\cos x}{1-x}$ about x = 0.

What is the coefficient of x^2 in the Maclaurin series for the function $f(x) = \left(\frac{1}{1+x}\right)^2$?

For x > 0, the power series defined by $1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \dots + \frac{(-1)^n x^{2n}}{(2n+1)!}$ converges to which of the following?

- (A) $\cos x$
- (B) $\sin x$
- (C) $\frac{\sin x}{x}$
- (D) $e^x e^{x^{2'}}$

Find the Maclaurin Series for the function $f(x) = e^{-3x}$. Write the first four non-zero terms.

What is the Taylor series expansion about x = 0 for the function $f(x) = \frac{\sin x}{x}$? Write the first four non-zero terms.

If $f(x) = x \sin 3x$, what is the Taylor Series for f about x = 0? Write the first four non-zero terms.

What is the Maclaurin Series for $\frac{1}{(1-x)^2}$? Write the first four non-zero terms.

The function f has derivatives of all orders and the Maclaurin series for the function f is given by $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+3}$. Find the Maclaurin series for the derivative f'(x). Write the first four nonzero terms and the general term.

If a function has the derivative $f'(x) = \sin(x^2)$ and initial conditions f(0) = 0, write the first four nonzero terms of the Maclaurin series for f.

What is the sum of the series $1 + \ln 3 + \frac{(\ln 3)^2}{2!} + \dots + \frac{(\ln 3)^n}{n!}$?

Suppose that g is a function which has continuous derivatives, and that g(5)=3, g'(5)=-2, g''(5)=7, g'''(5)=-3.

- (a) What is the Taylor polynomial of degree 3 for g centered at x = 5?
- (b) Use the polynomial that you found in part (a) to approximate g(4.9).

Find a fourth-degree Taylor polynomial for $f(x) = e^{(x-4)}$ centered at x = 4.